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Control of an Unstable, Nonminimum Phase Hypersonic Vehicle

Model

Michael W. Oppenheimer ∗

David B. Doman †

Air Force Research Laboratory, WPAFB, OH 45433-7531

Abstract

In this work, a control law for an unstable, nonminimum phase model of a hypersonic

vehicle is developed. The control problem is difficult due to the locations of the plant poles

and zeros. For an unstable system, feedback is required to stabilize the plant. However, one

cannot make the loop gains arbitrarily large without driving one or more of the closed-loop

poles into the right-half of the s-plane, since the system is nonminimum phase. Thus, there

is a limited range of feedback gain that results in a stable system. The nonminimum phase

behavior also places restrictions on the closed-loop bandwidth. For the hypersonic vehicle

control problem, low frequency control is desired and a rule of thumb is that the closed-

loop bandwidth must be less than one-half the right-half plane zero location. A right-half

plane zero located in the region of the desired gain-crossover frequency makes it impossible

to achieve the desired level of tracking performance. The achievable closed-loop bandwidth

might be so small that adequate control of the system is not achieved. Direct cancellation

of the right-half plane zero with an unstable pole in the controller is not an option. In this

work, a modified dynamic inversion controller is developed for a linear, time-invariant model

of a hypersonic vehicle. This modified dynamic inversion controller differs from the standard

dynamic inversion approach in that it does not attempt to cancel the right-half plane zero

with a pole, instead, it retains right-half plane zeros in the closed-loop transfer functions and

uses an additional feedback loop to stabilize the zero dynamics.

HSV Model

The model to be controlled in this case is given by

ẋ = Ax+Bu

y=Cx+Du
(1)

∗Electronics Engineer, Control Theory and Optimization Branch, 2210 Eighth Street, Ste 21, Email
Michael.Oppenheimer@wpafb.af.mil, Ph. (937) 255-8490, Fax (937) 656-4000, Member AIAA

†Senior Aerospace Engineer, Control Theory and Optimization Branch, 2210 Eighth Street, Ste 21, Email
David.Doman@wpafb.af.mil, Ph. (937) 255-8451, Fax (937) 656-4000, Senior Member IEEE
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where A ∈ Rnxn, B ∈ Rnxm, C ∈ Rpxn, D ∈ Rpxm, and n = 9, m = p = 2. The
model outputs are velocity (ft/sec) and flight path angle (deg), while the inputs are elevator
deflection (deg) and temperature addition in the combustor (deg R). More specifically, the
state-space matrices, derived from a nonlinear model,1 are

A =




−4.8e−4 2.05 0 −5.1e−6 −32.17 .084 0 −.513 0
−5.8e−7 −.077 1 1.9e−7 0 −9.69e−5 0 −1.59e−4 0
−1.29e−5 .07 0 2.39e−6 0 −.028 −8.77e−5 −.01 −7.73e−6

0 −7846.36 0 0 7846.36 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0

−.068 −7368.3 0 .0159 0 −286.5 −.641 1.518 1.078e−3

0 0 0 0 0 0 0 0 1
−.076 −5668.22 0 .018 0 −4.72 8.82e−4 −401.39 −.78




(2)

B =




−62.589 0.0064
−.0222 −2.61e−7

−0.997 8.25e−7

0 0
0 0
0 0

139.032 −.000115
0 0

−2500.6 −.0769




(3)

C =

[
1 0 0 0 0 0 0 0 0
0 −1 0 0 1 0 0 0 0

]
(4)

D =

[
0 0
0 0

]
(5)

where

x =
[

V α Q h θ ηf η̇f ηa η̇a

]T

(6)

V denotes velocity or true airspeed, α denotes the angle of attack, q denotes the pitch rate,

h is the altitude, θ is the pitch attitude, and the last four states represent temporal modal

coordinates that describe the first bending mode of the fore and aft fuselage. The outputs

of the model that we wish to control are the velocity V and the flight path angle γ = θ− α.

The idea in this work is to use a dynamic inversion type scheme to control the plant and
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provide a desired response. Unfortunately, this plant is nonminimum phase, with poles and

transmission zeros at the following locations:

Poles = {−0.39± j20.03,−0.32± j16.94,−1.0035, 0.9322,−5.6e−4,−3.88± j0.041}
Zeros = {0, 1.949,−1.948,−0.391± j19.58,−0.321± j16.95} (7)

Hence, dynamic inversion2 (DI) is not an option due to the right-half plane zero. This is

because DI will try to cancel plant zeros, thus resulting in a right-half plane pole in the

closed-loop system. Fortunately, a DI type scheme can be used to circumvent this issue.

Dynamic extension3 retains the nonminimum phase zero (does not try to cancel it with

an unstable pole), yet still has the desirable trait of decoupling the system. The following

describes the development of a dynamic extension algorithm for the system described above.

Dynamic Extension

Consider the system described in Eq. 1. The vector y is a set of controlled variables

(CVs). Dynamic inversion is used to decouple the system and produce desired responses

from the CVs. To begin the development, consider each CV:

yi = Cix + Diu, i = 1, 2 (8)

Since each Di, i = 1, 2 is a row of zeros, the input does not explicitly show in the output

equation. To obtain an equation with the input, differentiate y to obtain

ẏi = Ciẋ = CiAx + CiBu (9)

In this case, CiB 6= 0, i = 1, 2, so there is no need to take any more derivatives of the output.

Now, the system dynamics are given by

ẋ = Ax+Bu

ẏ = CAx+CBu
(10)

In order to decouple the controlled variables, the matrix CB must be right invertible. If this

is the case, then

u = (CB)−1 (ẏdes −CAx) (11)
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where ẏdes is a vector of pseudo-controls. In this case,

ẏdes =

[
V̇tdes

γ̇des

]
(12)

where Vt is the vehicle’s velocity and γ is the flight path angle. Applying the vector u in

Eq. 11 to the output and state dynamics equations produces

ẏ = CAx+CBu = CAx + (CB)
(
CB−1

)
(ẏdes −CAx) = ẏdes (13)

so that the controlled variables follow exactly the pseudo-controls and

ẋ = Ax+Bu = Ax + B
(
CB−1

)
(ẏdes −CAx)

=
(
A - B (CB)−1 CA

)
x + B

(
CB−1

)
ẏdes

= Ax + B
(
CB−1

)
ẏdes

(14)

As it turns out, the eigenvalues of Ax are the poles of the zero dynamics and are identically

equal to the zeros of the original system (see Eq. 7). So, the state dynamics are determined

by the inverse state space system

ẋ = Ax + B
(
CB−1

)
v

x=Ix+0v
(15)

Let S be a matrix of left eigenvectors of Ax. Then, Eq. 15 can be transformed into the

following Jordan form

ξ̇ = Λξ + SB
(
CB−1

)
v (16)

where Λ = SAxS−1. The states in Eq. 16 are related to the original states through the

transformation ξ = Sx.

The transmission zeros are defined as the values of ζ, the vectors zI , wI , the input zero

directions or zO, wO, the output zero directions that satisfy

[
(ζI−A) −B

CA CB

][
zI

wI

]
= 0 (17)

or

[
zO wO

] [
(ζI−A) −B

CA CB

]
= 0 (18)
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From the output zero case, solve for z0 to get

−z0B + w0

(
CB−1

)
= 0 (19)

Solving for w0 yields

w0 = z0B
(
CB−1

)
(20)

Substituting Eq. 20 into the first output equation in Eq. 18 yields

z0 (ζI - A) + w0CA = z0

(
ζI - A + B

(
CB−1

)
CA

)
= 0 (21)

Hence, the transmission zeros are the eigenvalues of the matrix
(
A−B

(
CB−1

)
CA

)
, which

is identically equal to the matrix Ax defined above. This result shows that the transmission

zeros of the original system are poles of the zero dynamics of the dynamic inversion. In order

to obtain stable zero dynamics, the desired dynamics of the CVs must be modified. This

requirement is due to the nonminimum phase behavior of the original system. Additionally,

the vectors z0 are the eigenvectors of Ax. Gathering all these eigenvectors into a matrix, Z0,

it is seen that Z0 is a matrix of left eigenvectors of Ax. Hence, Z0 = S. Then, from Eq. 20,

W0 = Z0B
(
CB−1

)
= SB

(
CB−1

)
(22)

Modified Dynamic Inversion Controller

Case 1

Suppose that one transmission zero, ζi, is in the right-half plane and would thus result in

unstable zero dynamics. Without loss of generality, suppose that the output zero direction

is given by

wRHP
0 =

[
0 wRHP

0 2

]
(23)

This means that only pseudo-input 2 excites the bad zero state (the state corresponding to

the nonminimum phase zero). Hence, we select ẏdes2 to include a stabilizing term, from the

bad zero state (ξRHP ), such that

v2 = γ̇des + kiξ
RHP (24)
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In Jordan form, the dynamics of the bad zero state become

ξ̇RHP = ζiξ
RHP + wRHP

0

[
v1

v2

]
= ζiξ

RHP + 0v1 + w0i12v2 = ζiξ
RHP + w0i12

(
γ̇des + kiξ

RHP
)
(25)

Thus,

ξRHP =
wRHP

0 2γ̇des

s− (ζi + wRHP
0 2ki)

(26)

Note that ki is selected so that (ζi + w0i12ki) < 0. Substituting this result into Eq. 24, the

new pseudo-control becomes

v2 = γ̇des + ki
wRHP

0 2γ̇des

s− (ζi + wRHP
0 2ki)

=
s− ζi

s− (ζi + wRHP
0 2ki)

γ̇des (27)

With perfect inversion, v1 = V̇t and v2 = γ̇. Thus,

[
Vt

γ

]
=

[
1
s
V̇t

1
s
γ̇

]
=




1
s

0

0 1
s

s−ζi

s−(ζi+wRHP
0 2

ki)




[
V̇tdes

γ̇des

]
(28)

So, as desired, the system is now decoupled, however, the right-half plane zero is still present.

This is the penalty for a nonminimum phase plant. Figure 1 shows a standard dynamic

inversion controller, while Figure 2 shows the modifications necessary to implement the

modified dynamic inversion control law. Note that both Figures 1 and 2 are drawn assuming

that the D matrix in Eq. 1 is identically zero and that the matrix CB, Eq. 9, is nonzero and

invertible. A slight modification must be made if these conditions are not met.

Case 2

Again, suppose that one transmission zero, ζi, is in the right-half plane and would thus

result in unstable zero dynamics. Now, let the output zero direction be given by

wRHP
0 =

[
wRHP

0 1 wRHP
0 2 · · ·wRHP

0 p

]
(29)

In this case, multiple pseudo-inputs excite the bad zero state (the state corresponding to

the nonminimum phase zero). In order to stabilize the system, select one pseudo-input to

stabilize the state associated with the right-half plane zero (ξRHP ). Hence, let

vi = ẏdesi + kiξ
RHP (30)
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Then, from the form of wRHP
0 given in Eq. 29, the dynamics of the bad zero state become

ξ̇RHP = ζiξ
RHP + wRHP

0




v1

v2

...

vp




= ζiξ
RHP + wRHP

0 1v1 + wRHP
0 2v2 + · · ·+ wRHP

0 pvp

= ζiξ
RHP + · · ·+ wRHP

0 i

(
ẏdesi + kiξ

RHP
)

+ · · ·+ wRHP
0 pvp

(31)

Solving for ξRHP yields

ξRHP =
wRHP

0 1v1 + · · ·+ wRHP
0 i−1vi−1 + wRHP

0 iẏdesi + wRHP
0 i+1vi+1 + · · ·+ wRHP

0 pvp

s− (ζi + wRHP
0 iki)

(32)

Substituting Eq. 32 into Eq. 30 and simplifying yields

vi =
(s− ζi) ẏdesi

s− (ζi + wRHP
0 iki)

+ki

(
wRHP

0 1v1 + · · ·+ wRHP
0 i−1vi−1 + wRHP

0 i+1vi+1 + · · ·+ wRHP
0 pvp

s− (ζi + wRHP
0 iki)

)

(33)

Thus, exact decoupling is not obtained. In order to achieve decoupling, it is necessary to

add another term to cancel the effects of vk, k = 1, 2, · · · , p : k 6= p. Hence, modify Eq. 30

to the following:

vi = ẏdesi + kiξ
RHP +

∑

j,j 6=i

qij ẏdesj

s + ζi

(34)

Substituting Eq. 34 into Eq. 31 produces

ξ̇RHP = ζiξ
RHP + wRHP

0




v1

v2

...

vp




= ζiξ
RHP + wRHP

0 1v1 + wRHP
0 2v2 + · · ·+ wRHP

0 pvp

= ζiξ
RHP + · · ·+ wRHP

0 i

(
ẏdesi + kiξ

RHP +
∑

j,j 6=i

qij ẏdesj

s + ζi

)
+ · · ·+ wRHP

0 pvp

(35)

Solving for ξRHP in Eq. 35 and substituting this result into Eq. 34 gives

vi = ẏdesi + ki


wRHP

0 iẏdesi +
∑

j,j 6=i

(
vjw

RHP
0 j + wRHP

0 i
qij ẏdesj

s+ζi

)

s− (ζi + wRHP
0 iki)


 +

∑

j,j 6=i

qij ẏdesj

s + ζi

(36)
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Grouping like terms and simplifying Eq. 36 gives

vi =
(s− ζi) ẏdesi

s− (ζi + wRHP
0 iki)

+

∑
j,j 6=i

(
kivjw

RHP
0 j + s−ζi

s+ζi
qij ẏdesj

)

s− (ζi + wRHP
0 iki)

(37)

For complete decoupling, the second set of terms in Eq. 37 must be identically zero. Using

this constraint and solving for vj gives

vj =
− (s− ζi) qij ẏdesj

(s + ζi) kiwRHP
0 i

(38)

Letting

qij = kiw
RHP
0 i (39)

produces

vj =
− (s− ζi) ẏdesj

(s + ζi)
(40)

As before, with perfect inversion, v1 = V̇t and v2 = γ̇. Then, in this case, the expression

between the desired and actual controlled variables becomes




v1

v2

...

vi

...

vp




=




−(s−ζi)
(s+ζi)

0 0 · · · 0 · · · 0

0 −(s−ζi)
(s+ζi)

0 0 0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 s−ζi

s−(ζi+wRHP
0 i

ki)
0 · · · 0

0 0 0 0 · · · 0 −(s−ζi)
(s+ζi)







ẏdes1

ẏdes2

...

ẏdesi

...

ẏdesp




(41)

So, as desired, the system is now decoupled, however, the right-half plane zero is still present.

This is the penalty for a nonminimum phase plant.

Results

For the system described by Eqs. 1- 5, one zero is located in the RHP (see Eq. 7). In

this case, w0 associated with the nonminimum phase zero is

w0i =
[
−0.000844 18.866

]
(42)

For an initial design, assume that

w0i =
[

0 18.866
]
≈

[
0 18.866

]
(43)
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so that case 1 applies. Thus, it can be seen that only the pseudo-input associated with the

flight path angle, γ, affects the bad zero state. Let

v1 = ẏ1des = V̇tdes

v2 = ẏ2des + kξRHP = γ̇des + kξdes
(44)

Then,

ξ̇RHP = λRHP ξRHP + 18.866v2 = λRHP ξRHP + 18.866
(
γ̇des + kξRHP

)
(45)

Solving for ξRHP yields

ξRHP =
18.866

s− (1.949 + 18.866k)
γ̇des (46)

and

v2 = γ̇des + kξRHP = γ̇des + k

(
18.866

s− {1.949 + 18.866k}
)

γ̇des

=

(
s− 1.949

s− {1.949 + 18.866k}
)

γ̇des

(47)

Selecting k in Eq. 48 to yield an all-pass filter, k ≈ −0.20667 yields

v2 =

(
s− 1.949

s + 1.949

)
γ̇des (48)

Note that a right half plane zero has two effects on the system, the first a magnitude and

the second a phase. Unfortunately, the phase effects cannot be altered with this technique,

however, the magnitude effects can be eliminated by choosing k so that an all-pass filter is

obtained. Thus, the pole has been placed at the mirror (about the jω axis) location in the

left half of the s-plane. Now, the pseudo-input relationship becomes

v =

[
v1

v2

]
=

[
1 0

0 s−1.949
s+1.949

][
V̇tdes

γ̇des

]
(49)

With perfect inversion, the following closed-loop system is obtained

v =

[
Vt

γ

]
=

[
1
s

0

0 s−1.949
s(s+1.949)

][
V̇tdes

γ̇des

]
(50)

Figures 3 and 4 show the velocity and flight path angle responses along with the ideal

response found using Eq. 50 and the control deflection time histories. A small amount of

error exists and this is directly related to the assumption in Eq. 43. It should be pointed
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out that prefilters were wrapped around the inversion controller. For the velocity channel,

a simple proportional-integral prefilter was used, while for the flight path angle channel,

a proportional-integral-derivative prefilter was used. The prefilters were the same for the

simulation runs of cases 1 and 2.

Now, relax the assumption in Eq. 43 so that case 2 applies. Using Eqs. 38, 39, and 40

and selecting v2 to stabilize the bad zero state yields

v2 = ẏ2des + kξRHP = λ̇des + kξRHP +
q21V̇tdes

s + λRHP
(51)

Selecting q21 = kwRHP
0 1 gives

v1 =
s− λRHP

s + λRHP
V̇tdes

v2 =
s− λRHP

s− (λRHP + wRHP
0 2k)

γ̇des

(52)

Now, the pseudo-input relationship becomes

v =

[
v1

v2

]
=




s−λRHP

s+λRHP 0

0 s−λRHP

s−(λRHP +wRHP
0 2)




[
V̇tdes

γ̇des

]
(53)

With perfect inversion, the following closed-loop system is obtained

y =

[
Vt

γ

]
=




1
s

(
s−λRHP

s+λRHP

)
0

0 1
s

(
s−λRHP

s−{λRHP +wRHP
0 2}

)



[
V̇tdes

γ̇des

]
(54)

Figures 5 and 6 shows the velocity and flight path angle responses along with the ideal

response found using Eq. 54. Notice that the error between the actual and ideal responses is

much less than that seen in Fig. 4. Again, this is directly attributable to utilizing the case

2 work.

Conclusions

In this work, a dynamic inversion type controller was developed for an unstable, non-

minimum phase hypersonic vehicle model. The technique used here allows decoupling of the

system, in the same way that standard dynamic inversion allows decoupling. The difference

is that the nonminimum phase zero cannot be cancelled by an unstable pole. Hence, the

nonminimum phase zero is retained in the closed loop and a user selected gain is used to

place the left half plane pole.
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Figure 1: Standard Dynamic Inversion.
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